Find the coordinates of vertex and y-intercept.

1.
$$y = x^2 + 3x + 2$$

2.
$$y = x^2 + 5x - 6$$

2.
$$y = x^2 + 5x - 6$$
 3. $y = 2x^2 - 4x + 2$

4.
$$y = 3x^2 - 8x + 5$$

5.
$$y = x^2 - 4x + 3$$

Graph each parabola.

6.
$$y = x^2 - 2x - 3$$

7.
$$y = 2x^2 - 7x - 4$$

7.
$$y = 2x^2 - 7x - 4$$
 8. $y = 5x^2 - 11x - 12$

9.
$$y = x^2 + 2x - 4$$

10. The quadratic g is given by $g(x) = ax^2 + bx + c$, where a and c are negative constants. Which of the following could be the graph of g?

(A)

(B)

(C)

- 11. The figure above shows the graph of a quadratic function f that has a minimum at the point (1,1). If f(b) = f(3), which of the following could be the value of b?
- (A) -3
- (B) -2
- (C) -1
- (D) 1
- (E) 5

1. vertex:
$$\left(-\frac{3}{2}, -\frac{1}{4}\right)$$

y-intercept = 2

1. vertex:
$$\left(-\frac{3}{2}, -\frac{1}{4}\right)$$
 2. vertex: $\left(-\frac{5}{2}, -\frac{49}{4}\right)$
y-intercept = 2 y-intercept = -6

3. vertex:
$$(1,0)$$

y-intercept = 2

4. vertex:
$$\left(\frac{4}{3}, -\frac{1}{3}\right)$$

5. vertex:
$$(2,-1)$$

y-intercept = 3

$$y$$
-intercept = 5

$$cept = 3$$

7.

8.

9.

10. (A)

11. (C)